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Abstract 
 
Due to the threat of climate change, renewable feedstocks & alternative energy carriers are 
becoming more necessary than ever. One key vector is hydrogen, which can fulfil these roles 
and is a renewable resource when split from water using renewable electricity. Electrolyzers 
are often not designed for variable operation, such as power from sources like wind or solar. 
This work develops a framework to optimize the design and operation of a large-scale 
electrolyzer hub under variable power supply. The framework is a two-part optimization, where 
designs of repeated, modular units are optimized, then the entire system is optimized based on 
those modular units. The framework is tested using a case study of an electrolyzer hub powered 
by a Dutch wind farm to minimize the levelized cost of hydrogen. To understand how the 
optimal design changes, three power profiles are examined, including a steady power supply, 
a representative wind farm power supply, and the same wind farm power supply compressed 
in time. The work finds the compressed power profile uses PEM technology which can ramp 
up and down more quickly. The framework determines for this case study, pressurized alkaline 
electrolyzers with large stacks are the cheapest modular unit, and while a steady power profile 
resulted in the cheapest hydrogen, costing 4.73 €/kg, the typical wind power profile only raised 
the levelized cost by 2% to 4.82 €/kg. This framework is useful for designing large-scale 
electrolysis plants and understanding the impact of specific design choices on the performance 
of a plant.  
 
Keywords: electrolysis; hydrogen; wind power; levelized cost of hydrogen; economic 
optimization; Mixed Integer Linear Program  
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Nomenclature 
A0  base stack area for a reference stack 
Astack stack area 
Asurf  estimated surface area of the electrolyzer stack 
AE(t,e) available electricity at any time in any price tier (MW) 
AF annualization factor 
blockCap(k,l,m) block power capacity for each stack technology, size, & number of 

stacks (MW) 
blockCost(k,l,m) investment cost for stack types for each stack technology, size, & 

number of stacks, & includes block level balance of plant (Mill. €) 
C0  base cost for a reference stack 
Ccomp  module cost of hydrogen/oxygen compressors 
Ccool  bare module cost of inter coolers 
Cheat  module cost of heaters 
Cinv,curr  current balance of plant component of interest’s investment cost 
Cpump  bare module cost of pumps 
Csep  module cost of the hydrogen/oxygen separators 
Cstack  investment costs of the electrolyzer stacks 
CapConv capital investment converter (Mill. €) 
CapEx capital expense of the system annualized over time (Mill. €) 
CapExblock	 capital cost of an electrolyzer block, in the block optimization 
cccool  commodity costs of cooling 
ccelec commodity costs of electricity 
ccheat	 commodity costs of heating 
CEPCI  chemical engineering plant cost index 
e electricity tiers [wind, power purchase agreement, grid] 
EC(t) electricity consumption in any given time period (MW) 
ECE(t,e) electricity consumed in any tier in any given time period (MW) 
EP(t,e) electricity price at any time in any price tier (k€ MWh-1) 
F  Faraday’s constant 
f iteratively varied scalar used to optimize the system 
Fp  cost factor for pressurized designs  
Gconv  convectional heat losses 
Gcool  required cooling demand of the block 
Gheat  required heat demand of the block 
hconv  convective heat transfer coefficient 
HProd(j,k,l,m,t) hydrogen production rate in any time period of a specific block 

number, technology, size & number of stacks (kg s-1) 
HProdSys(t) total hydrogen production in any given time period (kg) 
i  current density  
j block numbers 
k electrolyzer technologies [PEM_LP, PEM_HP, AWE_LP, AWE_HP] 
k1, k2, k3  cost fitting parameters 
l stack sizes [small, med, large] 
LCOH Levelized Cost of Hydrogen (€ kg-1) 
loadmin minimal load of blocks (fraction) 
M  cost scaling exponent 
m number of stacks per block [small, med, large] 
n	 lifetime of plant in years (years) 
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O(j,k,l,m,t) binary variable for the activity (on / off) of a specific block number, 
technology, size & number of stacks combination 

OpEx(t) operating expenses of each time period (k €) 
OpExblock  operational costs of an electrolyzer block, in the block optimization 
OpMainRep  annual cost of operations, maintenance, and stack replacement	
p  stack pressure 
Pelec  total block electrical power 
pH2O  water pressure 
Power(j,k,l,m,t) power loading level for a specific block number, technology, size & 

number of stacks in any given time (MW) 
powerBoP(j,k,l,m,t)	 power consumption of the balance of plant for a specific block 

number, technology, size & number of stacks in any given time (MW) 
𝑄!! total amount of hydrogen produced in a year (Mill. kg) 
R  universal gas constant  
r discount rate 
rampDown(k,l,m) maximum ramp rate down as a fraction for each stack technology, 

size, & number of stacks (% hr-1) 
rampRateDown(k,l,m) rate at which electrolyzers can ramp down (MW) 
rampRateUp(k,l,m) rate at which electrolyzers can ramp up (MW) 
rampUp(k,l,m) maximum ramp rate up as a fraction for each stack technology, size, 

& number of stacks (% hr-1) 
SBoPEfix(k,l,m) specific BoP electricity consumption offset / axis intercept for each 

stack technology, size, & number of stacks (MW) 
SBoPEvar(k,l,m) specific BoP electricity consumption for each stack technology, size, 

& number of stacks (MW per MW stack) 
SHPfix(k,l,m) specific hydrogen production offset for each stack technology, size, 

& number of stacks (kg s-1)     
SHPvar(k,l,m) specific hydrogen production for each stack technology, size, & 

number of stacks (kg s-1 per MW) 
sysCap Overall system capacity (MW) 
T stack temperature  
t time periods 
Tamb  ambient temperature 
tmul length of time step in hours (hours) 
TotCost total cost to operate per year (Mill. €) 
Δt length of time steps in s (s) 
Urev  reversible stack voltage 
Urev,0  reversible stack voltage at standard conditions 
UTN  thermoneutral voltage 
V  component capacity 
Y(j,k,l,m) binary variable for the existence of a block number, technology, size 

& number of stacks combination 
 
ε tolerance level for the optimization 
ξconv converter efficiency 
τ  number of full load hours 
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List of Abbreviations 
CO2 – Carbon Dioxide 
D&O – Design and operation 
GHG – Greenhouse Gas Emissions 
H2 – Hydrogen 
O2 – Oxygen 
LCOH – Levelized Cost of Hydrogen 
AWE – Alkaline Water Electrolysis 
PEMEC – Polymer Electrolyte Membrane Electrolysis 
SOEC – Solid Oxide Electrolysis 
BOP – Balance of Plant 
LMTD – Log-Mean-Temperature-Difference 
CEPCI – Chemical Engineering Plant Cost Index 
MILP – Mixed Integer Linear Program 
FLH – Full Load Hours 
LP – Low Pressure 
HP – High Pressure 
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1.0 Introduction 
 
Over the coming years, the world’s population will continue to grow, and more people will 
achieve higher standards of living, increasing the energy and commodity demands worldwide. 
Climate change is a serious concern, and these increased demands will only put further strain 
on global supply chains. The European Union has committed to reduce greenhouse gas 
emissions by 80-95%, while the United Kingdom has committed to total net zero greenhouse 
gas emissions [1,2]. New, low carbon technologies must be investigated and developed to 
achieve these ambitious targets. As a part of these greenhouse gas reduction efforts, industrial 
decarbonization must be considered, particularly with respect to feedstocks. Hydrogen is an 
important industrial feedstock and energy carrier which can be decarbonized through 
renewable energy.  
 
Starting in the 20th century, hydrogen has become an integral part of the fuel industry for 
petroleum refining [3]. It is also heavily used in ammonia production, metal refining, and food 
processing. Since 1975, the annual demand for pure hydrogen has more than tripled to 70 Mt 
in 2018 [4]. Currently, hydrogen is primarily produced from steam methane reformation of 
natural gas, accounting for around three-quarters of annual pure hydrogen production. The 
balance of the hydrogen is created in the production of syngas from coal gasification (23% of 
hydrogen produced annually), and from water electrolysis (2% of hydrogen) [3]. This means 
that approximately 98% of pure hydrogen produced annually comes from fossil fuel sources, 
meaning there is still a heavy carbon burden associated with the production of hydrogen, 
around 830 million tons of CO2 per year [3]. 
 
Hydrogen has the potential to fulfil other important roles in the future as well, for example as 
an alternative fuel as pure hydrogen, synthetic methane, ammonia or methanol [3]. It could also 
serve as an energy storage medium, as it can be stored in its pure form for later use [5–7]. The 
hydrogen can be used in fuel cells to convert the stored energy to electricity, or as a chemical 
feedstock and reductant. The process of generating gas as an energy storage medium from 
electricity is called Power-to-Gas. If hydrogen were generated through water electrolysis using 
renewable electricity, this would provide a potential green source for hydrogen, thus 
decarbonizing these industrial processes.  
 
Electrolysis has been a source of interest for a long time, but has been gaining popularity in 
recent years as a green source for hydrogen [8–10]. There are three main technologies 
employed in electrolysis: alkaline water electrolysis (AWE), polymer electrolyte membrane 
electrolysis (PEMEC), and solid oxide electrolysis (SOEC). Of these three, AWE is the oldest 
and most commercially developed [11]. In AWE, the anode and cathode bipolar plates are 
separated by a membrane which is only permeable to hydroxide ions, but not to protons, H+, 
which separates the gas evolution & ions. AWE electrolyzers are supplied with liquid alkaline 
electrolytes, such as sodium hydroxide or potassium hydroxide in an aqueous solution, rather 
than pure water or acid, improving performance through increased ion conductivity and 
reducing corrosion losses [4]. This allows for long stack lifetimes, well into the tens of 
thousands of hours [12]. Further, they do not use expensive platinum-group metals, reducing 
the cost of these designs [4,13]. Lee et al demonstrated the continued importance of AWE for 
hydrogen production now and into the future, due to improvements in the technology [14]. 
 
Polymer electrolyte membrane electrolyzers are a newer technology, which are still being 
developed, but are available commercially in smaller units than in AWE. This type of 
electrolysis also requires anode and cathode bipolar plates to be separated by a membrane, 
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however, in this scenario, the membrane is only permeable to hydrogen ions, or protons, but 
not to hydroxide ions. This again separates the ions and half reactions to each side of the 
membrane. PEM electrolyzers are supplied with pure water, rather than a basic solution, 
meaning the inside of a PEMEC is very acidic due to the concentration of hydrogen ions. This 
necessitates the use of expensive platinum-group metals to prevent corrosion [15]. These 
designs benefit from the ability to more easily handle partial load during operation and that 
they can handle much higher current densities than alkaline water electrolyzers, both of which 
increase their flexibility [16]; they also represent a more intensified technology. 
 
Solid oxide electrolyzers are still in the research stage and have not been extensively 
commercialized yet. These electrolyzers have the potential for higher efficiencies than either 
PEMEC or AWE units due to significantly elevated temperatures [17]. However, since these 
designs have not been commercialized, they are not examined in this work.  
 
Historically, electrolyzers have used electricity from a steady power source, such as 
hydroelectric power from a dam [4]. The low cost of hydroelectric power, combined with the 
advantage of a steady power source, benefitted the business case. More recently, there has been 
some research recently into connecting electrolyzers to intermittent power supplies, usually 
wind. 
 
There have been several studies on the operation and use of electrolyzers under different power 
supply conditions. One study by Jorgensen and Ropenus studied the prices of hydrogen from 
an electrolyzer connected to a grid with high wind penetration, and found that electrolyzers can 
be used to effectively balance the grid, and to uptake excess wind production, but that the 
hydrogen produced is more expensive than established targets [18]. Troncoso and Newborough 
explored using electrolyzers to mitigate wind curtailment by having a readily available load to 
uptake excess wind power. They found the cost of hydrogen from these systems to be slightly 
more expensive, in the range of $20-30 per kg, but that it increased the viability of wind power 
plants [9].  Zhang and Wan also studied the use of electrolyzers to uptake excess electricity 
from wind farms, rather than using wind curtailment, and they found that the hydrogen 
produced in this way would be cheaper than hydrogen produced by pulling electricity from the 
grid [19]. Green, Hu, and Vasilakos studied how introducing large electrolyzers would affect 
the electrical grid and capacity mix. They found that while the hydrogen produced from these 
electrolyzers would be more expensive than the hydrogen produced by natural gas, it would 
encourage the integration of wind power into the grid [20]. Bennoua et al. further described 
how electrolyzers could act as a balancing mechanism for the electrical grid [21]. Loisel et al. 
performed a study on the economics of combining an offshore wind farm with a hydrogen 
production facility, and found that the only way to make such a system economically viable 
was to limit the number of potential end uses for the hydrogen & power to only a couple energy 
products, rather than trying to provide broad usability across a range of scenarios [5].  
 
Other studies have integrated a way of using hydrogen, such as storage, fuel cells, or hydrogen 
fueling stations, into the system that is being examined to understand how electrolyzer 
operational strategies affect the end use. Grueger et al. demonstrated how an electrolyzer and 
fuel cell combination could be used to reduce forecasting errors in the power produced by a 
100 MW wind farm through electrolysis production of hydrogen during positive forecast errors, 
and fuel cell consumption of hydrogen during negative forecast errors [22]. Chang et al. 
examined the possibility of integrating an electrolyzer / fuel cell system into large-scale wind 
farm in Taiwan in 2025, and found that this could increase the available energy by up to 7% 
[23]. Menanteau et al., who examined the impact of various electrical supply and hydrogen 
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demand scenarios for a wind-electrolyzer combination found that hydrogen storage made 
hydrogen very expensive, but that the size of necessary storage could be reduced by connecting 
the system to the grid to supplement electricity when needed [24]. Rahil et al. examined the 
impact of operational strategy for a small-scale electrolyzer on the cost of hydrogen produced, 
and found that the cheapest hydrogen was produced when the electrolyzer used off-peak 
electricity, rather than continuously operating [10]. Dagdougui et al. examined a supply chain 
where local hydrogen refueling stations are supplied by a central electrolyzer with storage 
which is powered by a mix of wind and solar, developing a mathematical programming model 
which could satisfy the demand at all refueling stations at all times [25]. Kim et al examined 
connecting an electrolyzer to a blast furnace in the steel sector, finding that it would reduce the 
total carbon dioxide released in steelmaking [26].  
 
Another important area of research investigates the economic performance of electrolyzer 
systems under a range of conditions. Lee et al performed a techno-economic analysis of major 
hydrogen generation technologies, including electrolysis, at several scales for use in Korea. 
They found that scale is very important in the final cost of the hydrogen, for which technology 
may be the best choice [27]. Yates et al performed a techno-economic analysis on combining 
photovoltaics with electrolyzers for off grid applications, finding the effectiveness is dependent 
on how much energy the photovoltaic cell produces [28]. Gallardo et al examined the potential 
for hydrogen production from solar power in the Atacama desert, and found that it can be 
extremely cost competitive with other hydrogen production technologies [29]. Sadeghi et al 
investigated several methods of producing hydrogen, such as steam methane reforming, coal 
gasification, photovoltaic electrolysis, and solar thermal electrolysis, demonstrating that while 
photovoltaic electrolysis is more expensive than classical methods of producing hydrogen, it is 
also significantly more environmentally friendly [30]. 
 
Many of these previous works focus on the operation of an electrolyzer system, rather than the 
design. However, an important knowledge gap that these previous works largely do not address 
is the design and operation interdependency. In larger systems, the design and operation of the 
system is a particularly conjoined problem – the way the system is designed will limit the ways 
it can operationally respond to changing loads or demands, and conversely, how the system 
needs to respond to changing loads or demands will affect the necessary design. This paper is 
novel by adding design as a decision variable which can be optimized to the more traditional 
operational optimizations. 
 
This paper seeks to fill this knowledge gap by providing a framework by which the design and 
operational strategy of a large-scale wind powered hydrogen electrolyzer may be optimized. In 
this work, the goal is to minimize the levelized cost of hydrogen (LCOH), to make the hydrogen 
produced as cheap as possible. While the focus of this work is economic, the framework could 
also be used to optimize the design and operation for any other objective, such as an 
environmental objective, with the appropriate modification to the objective function. Also, the 
large size means there will be multiple stacks in the system, presenting interesting opportunities 
for more complex responses to changing operational load. These considerations imply the 
necessity for and novelty of a framework for the systematic design and operational strategy of 
large-scale hydrogen electrolyzers. 
 
Section 2.1 of this paper defines the problem statement, then in section 2.2 presents the 
mathematical formulations of the problem of optimal design and operation at two levels, and 
finally in section 2.3 describes the case study of interest. Section 3 discusses the results of 
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applying the framework to the case study. Section 4 concludes the work by reviewing the 
framework and the results. 
 
2.0 Materials & Methods 
2.1 Problem Statement 
In this work, a framework is developed for the optimal design and operational strategy for a 
large-scale water electrolyzer powered by wind. Large-scale hydrogen production is a 
necessary precursor for many hydrogen-powered technologies to be viable [31], and would 
provide opportunities for industrial decarbonization in many sectors. The framework will 
determine the appropriate number of electrolyzer stacks & their associated size, how those 
stacks should be grouped, what size the balance of plant components must be to accommodate 
those stacks, and how to operate the system to respond to power availability and price.  
 
The goal of the framework is to minimize the LCOH, so that hydrogen produced by the system 
is as cheap as possible. The framework is flexible and can be used to determine the optimal 
design and operation of an electrolyzer system given any input scenario, including alternative 
power profiles & power costs, alternative system & stack sizing, alternative technology 
choices, or even use an alternative objective function rather than LCOH. 
 
This design problem necessitates multiscale modelling to accurately capture the behavior of 
the system and its constituent components. This structure is addressed through the use of two 
levels of optimization. The first level uses a general process modelling system called gPROMS 
to optimize the design of an individual electrolyzer modular block, composed of an electrolyzer 
stack(s) and some associated balance of plant components. Thus, the design of an electrolyzer 
block for achieving a given power level is obtained, and then that design is simulated in 
gPROMS to determine the partial load behavior. The second level uses the output of the 
gPROMS optimization in a system level optimization constructed in the mathematical 
modelling system called GAMS, to determine the optimal number, type, and combination of 
electrolyzer blocks to minimize the LCOH for a given range of hydrogen production rates. 
 
The framework takes the following as inputs: 
- Time profile of available power from all sources 
- Time profile of associated cost of power 
- Hydrogen & oxygen delivery pressure 
- Electrolyzer system power capacity 
- Power electronics efficiency 
- Maximum current density for each electrolyzer technology 
- Faradaic efficiency 
- Operating temperature 
- Electrolyzer ramping rates 
- Minimum load calculation 
- Lifetime of plant 
- Discount rate 
- System cost (outside of stack & some balance of plant components) 
- Baseline stack cost estimates and associated stack sizes 
 
The framework produces the following output: 
- Levelized cost of hydrogen 
- Optimal stack size, technology, number of stacks, and operating pressure 
- Time series of hydrogen produced over the production horizon 
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- Capital cost of the optimal design 
- Operating costs of the optimal design 
- Operational strategy for the power profile provided 
 
2.2 Mathematical Formulation 
2.2.1 Block Design 
Electrolyzer blocks represent repeating, modular units in the electrolyzer system. The central 
elements of an electrolyzer block are the electrolyzer stacks and the relevant block-level 
balance of plant (BOP) components. BOP components are included in the block flowsheet if 
they either have an influence on the block design, e.g., preheating, or must be represented by 
multiple units in the electrolyzer system such as compressors. The BOP components included 
are a water preheater, gas separators, gas compressors and a feed water pump if electrolysis 
takes place at pressurized conditions. If multiple compression stages are required, the process 
flowsheet contains intercoolers. 

 
Figure 1: The flowsheet of a generic electrolyzer block. Depending on the particular block in question, some 
details may change, such as number of compressors, or the presence of a feed water pump. 
 
Each combination of electrolyzer block is implemented in the electrolyzer system model, 
examining electrolyzer technology (AWE, PEMEC), electrolyzer pressure (ambient, 
pressurized), stack power capacity (1, 5, 10 MW stack sizes), and stack number (1, 5, 10 stacks 
per block), giving 36 different electrolyzer block designs. Electrolyzer technology and pressure 
variants are implemented to investigate cost and operational aspects. Ambient pressure systems 
require expensive hydrogen compression, whereas the investment costs for pressurized 
electrolyzer stacks are higher. The electrolyzer pressure is introduced as a discrete design 
decision in the system model since electrolyzer cost functions dependent on the electrolyzer 
pressure are not available. Stack numbers and power capacities are implemented to investigate 
economy of scale effects of electrolyzer stacks and BOP components.  
 
To model the variations on block level, all components are represented in the respective 
flowsheets. Capital expenditures of an electrolyzer block, CapExblock are defined as a 
modification of cost equations from Turton et al [32] and Bejan & Moran [33]: 
 

𝐶𝑎𝑝𝐸𝑥"#$%& = 𝐶'()%& + 3.7 ∗ ^𝐶*+)( + 𝐶%$,- + 𝐶'+- + 𝐶-.,- + 𝐶%$$#_ Eq. 1 
 
where Cstack is the investment costs of the electrolyzer stacks, Cheat is the module cost of the 
heater, Ccomp is the module cost of the hydrogen/oxygen compressors and Csep is the module 
cost of the hydrogen/oxygen separators. Cpump is the bare module costs of the pump and Ccool 
is the bare module costs of the inter coolers, either of which are only included if the flowsheet 
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contains these components. The cost factor of 3.7, which incorporates additional costs such as 
installation or planning, is taken from the literature [33,34]. 
 
When operating an electrolysis block, mainly four commodities are required: water, electricity, 
cooling and heating. In this work, it is assumed that water costs are based on a constant annual 
fee. Therefore, the operational costs of an electrolyzer block are described as OpExblock	
 

𝑂𝑝𝐸𝑥"#$%& = 𝜏 ∗ ^𝑐𝑐+#+% ∗ 𝑃+#+% + 𝑐𝑐*+)( ∗ 𝑄̇*+)( + 𝑐𝑐%$$# ∗ 𝑄̇%$$#_ Eq. 2 
 

𝑃+#+% = 𝑃+#+%,'()%& + 𝑃+#+%,0$1 Eq. 3 
 

𝐺̇%$$# = 𝐺̇%$$#,'()%& + 𝐺̇%$$#,0$1 Eq. 4 
 

𝐺̇*+)( = 𝐺̇*+)(,'()%& + 𝐺̇*+)(,0$1 Eq. 5 
 
where ccelec, ccheat and cccool are the specific commodity costs of electricity, heating, and 
cooling. τ is the full load hours, Pelec the total block electrical power, Gheat the required heating 
demand and Gcool the required cooling demand of the block. The subscripts stack and BoP 
indicate the properties caused by stacks and the balance of plant of the block, respectively. The 
required cooling Gcool / heating Gheat demand is equal to the cooling/heating demands of the 
electrolyzer stacks and of the BOP. 
 
The electrolyzer model is essential for the block design and for determining the partial load 
behavior of electrolyzer blocks. To model the reversible stack voltage Urev, we use a 
simplification of the Nernst equation which is valid if product gases are considered wet and the 
pressures at cathode and anode are equal [35]: 
 

𝑈2+3 = 𝑈2+3,4 +
𝑅𝑇
2𝐹 ln k

1.5 ∗ ^𝑝 − 𝑝!!5_
𝑝!!5

o Eq. 6 

 
Where Urev,0 is the reversible stack potential at standard conditions, R is the universal 
gas constant, F is Faraday’s constant, T & p are stack temperature & pressure, and pH2O is the 
water pressure.  
 
Different approaches are used for AWE and PEMEC electrolyzers to calculate stack voltage. 
For AWE stacks the polarization curve uses a form commonly found in the literature but the 
parameters are specific to experiments conducted by partner members of the Hydrohub 
Gigawatt Scale Electrolyzer project [36,37]: 
 

𝑈%+## = 𝑈2+3 + 𝐶6 + 𝐶7 ∗ log q
𝑖
𝐶8
s + 𝐶9 ∗ 𝑖 Eq. 7 

 
where i is the current density. This modelling approach does not reflect temperature 
dependency of the voltage, so the model was fitted for a fixed temperature of electrolysis of 
90°C.  
 
The PEMEC overvoltages are modelled as proposed by Garcia-Valverde et al. [38,39]. This 
form is similar to the AWE modelling. However, many of the parameters are temperature 
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dependent, the parameter values are taken from the references rather than partner experiments, 
and finally, there is no addition of an extra constant to the reversible voltage. 
 

𝑈%+## = 𝑈2+3 +
𝑅𝑇
𝑛𝐹 ∗ ln

𝑖
𝑖4(𝑇)

+ 𝑅:(𝑇) ∗ 𝑖 Eq. 8 

 
The product gas streams are assumed to be fully saturated with water coming out of the stack. 
In this work, gas crossover in either direction is not considered. 
 
Finally, a thermal model is required to estimate the cooling/heating demand for the electrolyzer 
stacks. In this work, a simplified thermal model for a quasi-static lumped capacitance is 
applied. In this model, it is assumed that inlet and outlet temperature are equal and, therefore, 
the following simplified energy balance is derived for the cooling demand of the stack [35]: 
 

𝑄̇%$$#,'()%& = (𝑈'()%& − 𝑈;<) ∗ 𝑖 − 𝑄̇%$=3	 Eq. 9 
 
Where UTN is the thermoneutral voltage. The convectional heat losses Qconv are generally small 
compared to the cooling demand but a simple model for estimation of convectional heat losses 
is considered [35]: 
 

𝑄̇%$=3 = 𝐴'.2> ∗ ℎ%$=3 ∗ (𝑇 − 𝑇),")	 Eq. 10 
 
where Asurf is the estimated surface area of the electrolyzer stack, hconv the convective heat 
transfer coefficient, T the electrolyzer temperature and Tamb the ambient temperature. 
 
In addition to the technical modelling of the electrolyzer stacks, economic modelling is 
required to enable techno-economic optimization. Typically, investment cost functions for 
electrolyzers are available as a function of power capacity. However, given that current density 
is a design choice, and that stack area is the main cost driver due to material usage, the stack 
investment cost, Cstack, should be a function of stack area, Astack. This cost function follows the 
form of some cost functions defined in Turton et al [32]: 
 

𝐶'()%& = 𝐹1 ∗ 𝐶4 ∗ q
𝐴'()%&
𝐴4

s
?

	 Eq. 11 

 
where Fp is a pressure factor which represents that pressurized stacks are more expensive than 
ambient pressure stacks, C0 is the base cost for a reference stack, Astack is the electrolyzer stack 
area, A0 the base stack area for a reference stack and M a cost scaling exponent. 
 
Pumps and compressors are modelled using gPROMS built-in technical models. The feed water 
pump is modelled as a centrifugal pump with an isentropic efficiency of 0.8 and a mechanical 
efficiency of 0.9 [40]. The compressors are modelled as centrifugal compressors, also with an 
isentropic efficiency of 0.8 and a mechanical efficiency of 0.9 [40,41]. The maximum 
compression ratio for compressors before intercoolers are introduced to prevent overheating is 
3 for H2, and 4 for O2. The intercoolers, the preheater and the gas separators also use models 
implemented in the software as simple plate heat exchangers. The gas separators use an outlet 
temperature of 25°C for the cooling demand calculations. The heat exchangers are sized using 
the log mean temperature difference method (LMTD) with an assumed temperature difference 
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of 15°C [42]. Cost correlations for component sizing follow the form and fitting values 
proposed by Turton et al [32]: 
 

𝐶@=3,%.22 = k
𝐶𝐸𝑃𝐶𝐼%.22
𝐶𝐸𝑃𝐶𝐼2+>

o ∗ 10A&"B&!∗DEFGB&#∗DEF(G)!J	 Eq. 12 

 
Where Cinv,curr is the current component of interest’s investment cost, CEPCI is the chemical 
engineering plant cost index, used here to scale prices to the model year, which is 2017, k1, k2, 
and k3 are fitting parameters, and V is the capacity. 
 
In addition to the design, the partial load behavior of the block is determined in gPROMS. This 
is necessary for understanding how the hydrogen production rate and BOP operation energy 
usage change under different loading scenarios when the system is operating at partial load. 
The data sets for both the hydrogen production rate, and BOP energy usage are fitted to linear 
correlations for use in the system optimization, which is a linear optimization problem. Once 
linearized, the resulting y-axis intercept and the slope of the linearizations are transferred to the 
system optimization.  
 
2.2.2 System-Level Formulation 
The final system design and associated operational performance is calculated using a Mixed 
Integer Linear Program (MILP). The program takes as inputs the outputs from the gPROMS 
block models (block size, capital cost, partial load behavior of hydrogen production, partial 
load behavior of the balance of plant energy usage), information about the availability & cost 
of electricity, and information about the ramping rates of electrolyzer designs. It uses this 
information to calculate the optimal number, capacity, technology type for blocks to satisfy the 
design constraints, and calculates the optimal dynamic load for all blocks over all time periods 
in the optimization. 
 
The objective function to be minimized is the LCOH, which is the total annual cost of the system 
over the year, TotCost, divided by the total quantity of hydrogen produced, 𝑄!! [43]: 

 

𝐿𝐶𝑂𝐻 =
𝑇𝑜𝑡𝐶𝑜𝑠𝑡
𝑄!!

 Eq. 13 

 
This objective function (minimization of LCOH) is nonlinear, however, so it is instead 
optimized iteratively using the Dinkelbach algorithm, with a scalar f, originally initialized to 
an arbitrarily large value [44,45]: 
 

𝑚𝑖𝑛�𝑇𝑜𝑡𝐶𝑜𝑠𝑡 − 𝑓 ∗ 𝑄!!� Eq. 14 
 
The Dinkelbach algorithm is a method of linearizing certain nonlinear families of objective 
functions when the rest of the problem is also linear. By using this method to linearize the 
objective function, it ensures that a globally optimal solution will be converged upon. 
Optimized variables for the values are denoted as TotCost* and 𝑄!!*. From here, an evaluation 
must be made to determine if the solution to the min (LCOH) problem has been obtained, by 
comparing the optimized values for the variables to an error tolerance value, ε,	[44,45]  
 

�𝑇𝑜𝑡𝐶𝑜𝑠𝑡∗ − 𝑓 ∗ 𝑄!!
∗� ≤ 𝜀 Eq. 15 
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If the left-hand-side is less than the tolerance value, the solution to the LCOH optimization 
problem has been determined. The value of ε	is dependent on the problem and does not have a 
standard value. Otherwise, the value f must be updated as below, and the minimization must 
be re-run, [44,45]. 
 

𝑓 =
𝑇𝑜𝑡𝐶𝑜𝑠𝑡∗

𝑄!!
∗  Eq. 16 

 
The total cost over the planning horizon is defined as the sum of all operating, OpEx(t), over 
all time periods, t, plus the capital expenditure, CapEx, of purchasing the necessary units 
multiplied by the annualization factor [26]: 
 

𝑇𝑜𝑡𝐶𝑜𝑠𝑡 = 	𝐴𝐹 ∗ 𝐶𝑎𝑝𝐸𝑥 +�𝑂𝑝𝐸𝑥(𝑡)
(

 Eq. 17 

 
The formula for the annualization factor is dependent on the annual discount rate, r, and the 
project lifetime in years, n. Based on conversations with project partners the discount rate was 
set to be 8%, the project lifetime was assumed to be 15 years, and all costs / profits are 
normalized to the first year of the project [46]. 
 

 
The capital cost is the total sum of the cost of each block, j, of technology, k, size, l, and number 
of stacks, m, blockCost(k,l,m), plus an estimate of the capital cost of the balance of plant that 
is not included in the gPROMS balance of plant costing estimates, CapEst. The binary 
existence variable, Y(j,k,l,m), ensures that only blocks which have been built in the 
optimization are counted. 
 

𝐶𝑎𝑝𝐸𝑥 = � 𝑌(𝑗, 𝑘, 𝑙, 𝑚) ∗ 𝑏𝑙𝑜𝑐𝑘𝐶𝑜𝑠𝑡(𝑘, 𝑙, 𝑚)
K,&,#,,

+ 𝐶𝑎𝑝𝐸𝑠𝑡 Eq. 19 

 
The operational expenses are the cost of electricity in each price tier over the time horizon, 
EP(t,e), multiplied by the amount of electricity used, ECE(t,e), all multiplied by the length of 
a time period, and summed for each price tier for each period of the planning horizon. 
Electricity tiers are based on the source of the electricity, for example from the wind plant, or 
from potential power purchase agreements, plus the annual cost of operations, maintenance, 
and stack replacement, OpMainRep. 
 

𝑂𝑝𝐸𝑥(𝑡) =�𝐸𝐶𝐸(𝑡, 𝑒) ∗ 𝐸𝑃(𝑡, 𝑒)
+

∗ 𝑡,.# + 𝑂𝑝𝑀𝑎𝑖𝑛𝑅𝑒𝑝 Eq. 20 

 
Note that this variable, OpEx(t), differs from the OpExblock	variable introduced in the previous 
section, as OpEx(t) is the operational expenses of the entire optimized system, with varying 
load distribution across multiple potentially different blocks, rather than the operational 
expenses of a single block. The existence variable, Y(j,k,l,m), is 1 when a particular block 
number, size, and technology type combination is selected to be built, and 0 otherwise.	
 

𝐴𝐹 = 	
𝑟 ∗ (1 + 𝑟)=

((1 + 𝑟)= − 1) 
Eq. 18 
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𝑌(𝑗, 𝑘, 𝑙, 𝑚) = �1							𝑖𝑓	𝑎	𝑏𝑙𝑜𝑐𝑘	𝑤𝑖𝑡ℎ	𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟	𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛	𝑗, 𝑘, 𝑙	𝑒𝑥𝑖𝑠𝑡𝑠
0						𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																																																																																			

	 Eq. 21 
 
The operation variable, O(j,k,l,m,t), is 1 when a particular block number, size, and technology 
type combination is turned on in time period t producing hydrogen, and 0 otherwise. 
 
𝑂(𝑗, 𝑘, 𝑙, 𝑚, 𝑡) = �1							𝑖𝑓	𝑎	𝑏𝑙𝑜𝑐𝑘	𝑤𝑖𝑡ℎ	𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟	𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛	𝑗, 𝑘, 𝑙	𝑖𝑠	𝑜𝑛

0							𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																																																																															
	 Eq. 22 

 
To ensure the optimization only turns on blocks that are built, the operation variable must be 
set to be less than or equal to the existence variable. 
 

𝑂(𝑗, 𝑘, 𝑙, 𝑚, 𝑡) ≤ 𝑌(𝑗, 𝑘, 𝑙, 𝑚) Eq. 23 
 
To prevent the optimization from searching through multiple equivalent configurations, a 
degeneracy condition is imposed upon the binary variable Y(j,k,l,m)	indicating the existence 
of a particular combination of block number, technology type, and size. The degeneracy 
condition ensures that the block numbers start with 1 and count sequentially up. 
 

𝑌(𝑗, 𝑘, 𝑙, 𝑚) ≤ 𝑌(𝑗 − 1, 𝑘, 𝑙, 𝑚)							∀	𝑗 > 1 Eq. 24 
 
To prevent further degeneracy regarding the order of existing blocks, another degeneracy 
condition is implemented to ensure that the largest blocks are always listed first, using the size 
of available blocks blockCap(k,l,m). 
 
𝑌(𝑗, 𝑘, 𝑙, 𝑚) ∗ 𝑏𝑙𝑜𝑐𝑘𝐶𝑎𝑝(𝑘, 𝑙,𝑚) ≤ 𝑌(𝑗 − 1, 𝑘, 𝑙, 𝑚) ∗ 𝑏𝑙𝑜𝑐𝑘𝐶𝑎𝑝(𝑘, 𝑙,𝑚)				∀	𝑗 > 1 Eq. 25 

 
The power used by a specific block’s balance of plant in any time period, powerBoP(j,k,l,m,t), 
is given by the corresponding fixed energy demand, SBoPEfix(k,l,m), multiplied by the 
operational variable (to ensure this is not counted when the block is off), plus the specific rate 
of energy usage, SBoPE(k,l,m), multiplied by the stack power. 
 

𝑝𝑜𝑤𝑒𝑟𝐵𝑜𝑃(𝑗, 𝑘, 𝑙,𝑚, 𝑡) = 	𝑆𝐵𝑜𝑃𝐸!"#(𝑘, 𝑙,𝑚) ∗ 𝑂(𝑗, 𝑘, 𝑙,𝑚, 𝑡) + 𝑆𝐵𝑜𝑃𝐸(𝑘, 𝑙,𝑚) ∗ 𝑃𝑜𝑤𝑒𝑟(𝑗, 𝑘, 𝑙,𝑚, 𝑡) Eq. 26 
 
The electricity consumed by the system, EC(t), is the sum of stack power and block level 
balance of plant power, summed over all blocks, divided by the efficiency of the power 
conversion system, ξconv. 
 

𝐸𝐶(𝑡) = �
𝑃𝑜𝑤𝑒𝑟(𝑗, 𝑘, 𝑙, 𝑚, 𝑡) + 𝑝𝑜𝑤𝑒𝑟𝐵𝑜𝑃(𝑗, 𝑘, 𝑙, 𝑚, 𝑡)

𝜉%$=3K,&,#,,

 Eq. 27 

 
The sum of electricity used in each tier in each time period, ECE(t,e), must be equal to the total 
amount of electricity used by the system, EC(t). 
 

𝐸𝐶(𝑡) = 	�𝐸𝐶𝐸(𝑡, 𝑒)
+

 Eq. 28 

 
The amount of electricity used in each tier must be less than the amount of electricity available 
in each tier, AE(t,e). 
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𝐸𝐶𝐸(𝑡) ≤ 𝐴𝐸(𝑡, 𝑒) Eq. 29 

 
The hydrogen produced by a specific block in any time period, HProd(j,k,l,m,t), is given by 
the corresponding hydrogen production curve’s axis intercept, SHPfix(k,l,m), multiplied by the 
operational variable (to ensure this is not counted when the block is off), plus the specific 
hydrogen rate of production, SHP(k,l,m), multiplied by the stack power. 
 

𝐻𝑃𝑟𝑜𝑑(𝑗, 𝑘, 𝑙,𝑚, 𝑡) = 	𝑆𝐻𝑃$%&(𝑘, 𝑙,𝑚) ∗ 𝑂(𝑗, 𝑘, 𝑙,𝑚, 𝑡) + 𝑆𝐻𝑃(𝑘, 𝑙,𝑚) ∗ 𝑃𝑜𝑤𝑒𝑟(𝑗, 𝑘, 𝑙,𝑚, 𝑡) Eq. 30 
 
The hydrogen production of the entire system in any time period, HProdSys(t), is the sum of 
the hydrogen production rate for all blocks multiplied by the number of seconds per time step, 
Δt. 
 

𝐻𝑃𝑟𝑜𝑑𝑆𝑦𝑠(𝑡) = � 𝐻𝑃𝑟𝑜𝑑(𝑗, 𝑘, 𝑙, 𝑚, 𝑡) ∗ ∆𝑡
K,&,#,,

 Eq. 31 

 
The amount of hydrogen produced during the planning horizon of the system, 𝑄!!, is the sum 
of system hydrogen production in all time steps, converted to tons produced. 
 

𝑄!! =�
𝐻𝑃𝑟𝑜𝑑𝑆𝑦𝑠(𝑡)

108
(

 Eq. 32 

 
The power of a block is also limited to be less than its maximum design power, ensuring the 
power used by the block does not exceed what the block is designed for. 
 

𝑃𝑜𝑤𝑒𝑟(𝑗, 𝑘, 𝑙, 𝑚, 𝑡) ≤ 𝑏𝑙𝑜𝑐𝑘𝐶𝑎𝑝(𝑘, 𝑙, 𝑚) ∗ 𝑂(𝑗, 𝑘, 𝑙, 𝑚, 𝑡) Eq. 33 
 
The power of the block is bounded to be greater than the minimum load of the block, if the 
block is active, otherwise it is 0. 
  

𝑃𝑜𝑤𝑒𝑟(𝑗, 𝑘, 𝑙, 𝑚, 𝑡) ≥ 𝑙𝑜𝑎𝑑>?@ ∗ 𝑏𝑙𝑜𝑐𝑘𝐶𝑎𝑝(𝑘, 𝑙,𝑚) ∗ 𝑂(𝑗, 𝑘, 𝑙,𝑚, 𝑡) Eq. 34 
 
The amount by which electrolyzer block can change operation from time step to time step is 
defined by the ramping rates rampRateDown(j,k,l,m) & rampRateUp(j,k,l,m).	These	rates	
are	 calculated	 from	 a	 block	 specific	 fractional	 ramping	 rate, rampDown(k,l,m) & 
rampUp(k,l,m),	multiplied	by	the	block’s	capacity	and	the	timestep	length, tmul. 
 
𝑟𝑎𝑚𝑝𝑅𝑎𝑡𝑒𝐷𝑜𝑤𝑛(𝑗, 𝑘, 𝑙, 𝑚) = 𝑟𝑎𝑚𝑝𝐷𝑜𝑤𝑛(𝑘, 𝑙,𝑚) ∗ 𝑏𝑙𝑜𝑐𝑘𝐶𝑎𝑝(𝑘, 𝑙, 𝑚) ∗ 𝑡,.# 
𝑟𝑎𝑚𝑝𝑅𝑎𝑡𝑒𝑈𝑝(𝑗, 𝑘, 𝑙, 𝑚) = 𝑟𝑎𝑚𝑝𝑈𝑝(𝑘, 𝑙, 𝑚) ∗ 𝑏𝑙𝑜𝑐𝑘𝐶𝑎𝑝(𝑘, 𝑙, 𝑚) ∗ 𝑡,.# 

Eq. 35a  
Eq. 35b 

 
The actual change in power consumed by the blocks from one timestep to the next is bounded 
by the above ramping rates. 
 

𝑃𝑜𝑤𝑒𝑟(𝑗, 𝑘, 𝑙,𝑚, 𝑡) ≥ 𝑃𝑜𝑤𝑒𝑟(𝑗, 𝑘, 𝑙,𝑚, 𝑡 − 1) − 𝑟𝑎𝑚𝑝𝑅𝑎𝑡𝑒𝐷𝑜𝑤𝑛(𝑗, 𝑘, 𝑙,𝑚)							∀	𝑡 > 1 
𝑃𝑜𝑤𝑒𝑟(𝑗, 𝑘, 𝑙,𝑚, 𝑡) ≤ 𝑃𝑜𝑤𝑒𝑟(𝑗, 𝑘, 𝑙,𝑚, 𝑡 − 1) + 𝑟𝑎𝑚𝑝𝑅𝑎𝑡𝑒𝑈𝑝(𝑗, 𝑘, 𝑙,𝑚)							∀	𝑡 > 1 

Eq. 36a 
Eq. 36b 

 
The total power capacity of the system, which is the sum of all existing block capacities, must 
be equal the total system capacity specified (which in this case is 1 GW), sysCap. 
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𝑠𝑦𝑠𝐶𝑎𝑝 = 	�𝑌(𝑗, 𝑘, 𝑙, 𝑚) ∗ 𝑏𝑙𝑜𝑐𝑘𝐶𝑎𝑝(𝑗, 𝑘, 𝑙, 𝑚)

K,&,#

 Eq. 37 

 
2.3 Case Study 
The performance of the framework was explored using the case study of an electrolyzer 
powered by a 1-gigawatt scale offshore wind farm in the Netherlands, based on the ISPT 
HydroHub project [47]. The goal was to minimize the levelized cost of hydrogen produced by 
the plant through optimal design and operation decisions, and to understand the viability of 
large-scale electrolysis as an alternative to conventionally produced hydrogen. The system was 
optimized over a quarter-year, to limit the computation time. The system is assumed to have a 
15-year lifespan, with a discount rate of 8% on the capital cost of the system. The minimum 
load is 15% of the maximum load for the entire plant. 
 
To better understand how the framework responds to changes in inputs, three different 
electricity profiles were used as a starting point. All power profiles provide equivalent total 
energy, so they are comparable. The first profile provides the system with a constant power 
supply equal to the average utilization of the wind profile, also known as equivalent full load 
hours (Eq. FLH). This is used as a reference. The second power profile is a wind power profile 
obtained from the renewablesninja website [48–50], with data points at every hour for a quarter 
year (Wind). The profile was obtained for a theoretical oceanic wind farm located off the coast 
of the Netherlands near Rotterdam. The final power profile is the same wind profile as profile 
two, Wind, but compressed in time by a factor of four, so the data points reflected a quarter-
hour (Wind Qtr), where all relevant optimized quantities are multiplied by four to reflect the 
entire time horizon. These profiles provided the same energy with system full load hours of 
3983 hours, but were different temporally, and used to elicit potential differences in design 
choices in the framework. 
 

 
Figure 2: The power profiles used in this study 
 
For this case study, the technology choices were limited to Alkaline Water Electrolysis (AWE), 
and Proton Exchange Membrane Electrolysis (PEMEC). Both technologies are mature enough 
that they could feasibly be commercially scaled up to supply a 1 GW plant. Other technologies, 
such as solid oxide electrolyzers, or anion exchange membrane electrolyzers are not 
sufficiently commercially advanced to be scaled up in such a manner [51].  
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Two choices for the operating pressure of the electrolyzer were selected – one at atmospheric 
conditions (LP), and one where the electrolyzer was operated at the delivery pressure of the 
hydrogen, 30 bar (HP). These were selected to understand the impact of the presence of 
compressors after electrolysis on the final performance of the system. Finally, both the stack 
size and the number of stacks in a block are variables. To reduce the search space, three stack 
sizes, and three numbers of stacks per block were selected as available options for the 
optimization. The stack sizes selected were 1 MW, 5 MW, and 10 MW stacks based on 
industrially sized systems [36,52], and the options for the number of stacks per block are 1 
stack, 5 stacks, and 10 stacks.  
 
The cost for the rest of the plant above the cost of the stacks and associated balance of plant 
components discussed previously, CapEst, is assumed to be 1000 M€. Further, annual 
maintenance, operation, and stack replacement costs, OpMainRep, are estimated to be 10% of 
the total block cost. These values come from discussion with experts in the field. 
 
Table 1: Key parameters of the optimization and the values associated with them 

Parameter Symbol Description Value Reference 
𝜂'()*,%, Isentropic Compressor Efficiency 0.8 [40] 
𝜂'()*,)-'. Mechanical Compressor Efficiency 0.9 [40] 
𝜂*/)*,%, Isentropic Pump Efficiency 0.8 [40] 
𝜂*/)*,)-'. Mechanical Pump Efficiency 0.9 [40] 

 Max Pressure Ratio H2 3 [53] 
 Max Pressure Ratio O2 4 [53] 

𝑇'((0 Temperature of Cooling Water [°C] 25  
 Faradaic Efficiency 98% [37] 

𝑇123 Operating Temp PEM [°C] 80 [36] 
𝑇452  Operating Temp AWE [°C] 90 [4] 

𝐶𝐸𝑃𝐶𝐼'/66 Chemical Engineering Plant Cost Index, Current Year (2017) 567.5 [54] 
𝐶𝐸𝑃𝐶𝐼6-$ Chemical Engineering Plant Cost Index, Reference Year 

(2001) 
394 [32] 

𝐹* Cost scaling factor for pressurized electrolysis 1.2 [55] 
𝑀 Cost scaling exponent for area scaling 0.9 [55] 

𝐴7,123 Base active area size for a reference PEM electrolyzer [m2] 28 [56] 
𝐴7,452 Base active area size for a reference AWE electrolyzer [m2] 97 [4] 
𝐶7,123 Base cost for a reference PEM electrolyzer [€ m-2] 36000 [12] 
𝐶7,452  Base cost for a reference AWE electrolyzer [€ m-2] 8300 [12] 
𝑇8)9 Ambient temperature [°C] 25  
ℎ'(:; Convective heat transfer coefficient [W m-2 K-1] 4.3 [57] 
𝑈<= Thermoneutral voltage [V] 1.48 [57] 
𝜉'(:; Electrical Converter Efficiency 95% [58] 
𝑙𝑜𝑎𝑑)%: Block Minimum Load Level 15% [36] 

𝑟	 Discount Factor 8% [58] 
𝑛	 Project Lifetime [years] 15 [58] 

𝑟𝑎𝑚𝑝𝑅𝑎𝑡𝑒𝑈𝑝	 Rate electrolyzer can increase the load (AWE, PEM) [% / hr] 50, 100  
𝑟𝑎𝑚𝑝𝑅𝑎𝑡𝑒𝐷𝑜𝑤𝑛	 Rate electrolyzer can decrease the load (AWE, PEM) [% / hr] 75, 150  

𝐸𝑃 Cost of Wind (for all time periods) [€ MW-1] 40 [59,60] 
 
The system design was performed in gPROMS ProcessBuilder 1.5.0. The MILP was 
formulated in GAMS 25.0.3 and solved using CPLEX 12.8.0.0. 
 
3.0 Results & Discussion 
3.1 Block Design 
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The block design method was successfully able to optimize the design and cost for all the 
variations of block designs examined in the case study used to illustrate the framework 
developed here. Both the total cost of the entire block, and the cost per MW of the block can 
be found in Figure 2. The total cost for blocks goes up as both the individual stack size 
increases, and as the number of stacks per block increases. The designs with 10 MW stacks are 
the most expensive to build, costing millions of euros more per block than the smaller stacks. 
Blocks with ten stacks are also the most expensive to build, costing millions or even tens of 
millions of euros more to build than a single stack per block. The high-pressure designs are 
generally less expensive to build than an equivalent low-pressure design, despite needing 
higher quality designs and more material. This is due to savings on not needing large, expensive 
compressors, reducing the total capital cost. Further, AWE designs are cheaper than PEM 
designs, in all cases. This is because PEM is a newer technology, and because these designs 
use rare, expensive metals, raising the total cost. Together, this means that the cheapest design 
is a block with a single 1 MW stack that is high pressure and AWE, while the most expensive 
block is ten stacks of 10 MW each, which are low pressure and PEM. All of this is as expected, 
as these designs are the ones that require the most material and are the most complicated. 
 
 

 
Figure 3: The cost for each electrolyzer block type in (a) M€ and (b) M€ per MW 
 
When looking at the cost per MW of blocks, however, the results present a slightly different 
story. From this view, increasing stack size reduces the cost of blocks, such that the blocks 
which use the 10 MW stacks are the cheapest. Further, increasing the number of stacks also 
reduce the cost, where the designs with 10 stacks per block are the cheapest. This comes from 
economies of scale. Larger block sizes allow for larger balance of plant components. These 
tend to become relatively cheaper as size increases, reducing the per MW cost of the block. 
Both PEM and low-pressure designs tend to be more expensive per MW, for similar reasons 
as previously stated. This is similar to the total capital cost, as technology type and pressure do 
not impact the number of megawatts of stacks in a block. 
 
As previously discussed, part of the function of the block level optimization and modelling is 
to determine the partial load behavior of blocks. Inevitably, blocks will not be able to operate 
at full load, and so understanding the energy consumption and hydrogen production rates at 
partial load is critical. The power consumed by stacks was compared against the hydrogen 
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production rate of the block or the balance of plant power usage. To keep the mathematical 
program as a linear problem, the partial load behavior was linearized. The linearized values of 
each block technology type are listed in Table 2.  
 
Table 2: The specific hydrogen production rate of each technology (in kg s-1 (MW stack)-1) and the specific 
balance of plant electricity usage (in MW (BoP) MW (Stack)-1) 

Technology Type Specific H2 Production Rate Specific BoP Power Use 
AWE HP 0.00508 0.0087 
AWE LP 0.00524 0.0584 
PEM HP 0.00556 0.0095 
PEM LP 0.00572 0.0638 

 
The hydrogen production rate is independent of stack size, as larger stacks are not more 
energetically efficient at converting hydrogen. They use the same polarization curve, and so 
perform with the same efficiency for a given loading level. The production rate is also 
independent of stack size, as doubling the number of stacks at the same loading level will 
simply double the hydrogen production rate. The low-pressure designs have a higher hydrogen 
production rate than high pressure designs, as high pressure inhibits the reaction and lowers 
the efficiency of the stack. Further, PEM designs have a higher hydrogen production rate than 
AWE for a given load. PEM electrolyzers generally have better efficiency and polarization 
curve than alkaline electrolyzer stacks due to fundamental technology differences.  
 
The balance of plant power consumption is generally independent of stack size and number of 
stacks as both simply increase either the water flow rate or the hydrogen (and oxygen) flow 
rates. The balance of plant components are entirely dependent on the flow rates of these 
products and reactants for their power usage, therefore when the flow rates go up, the power 
consumption goes up commensurately. The low-pressure designs have a considerably higher 
balance of plant power consumption, as they require the use of compressors to compress the 
hydrogen (and oxygen) to delivery pressure. This is energetically expensive compared to 
pumping the inlet water to the required pressure for the high-pressure designs. PEM designs 
also use more power for the balance of plant than AWE designs, as they produce more 
hydrogen for a given loading level. This increases the flow rate, increasing the balance of plant 
power usage.  
 
Interestingly, these two performance characteristics work at cross purposes. The high-pressure 
AWE designs have the lowest hydrogen production rate per MW of the stack, but also have the 
lowest balance of plant power consumption, meaning the overall block will have a lower 
hydrogen production rate, but may also use less total power. Similarly, the low-pressure PEM 
designs have the highest hydrogen production rate and the highest balance of plant power 
consumption, meaning the overall block will have a higher hydrogen production rate, but may 
use more total power.  
 
Each optimal block design used an operational point where the current density was as high as 
the respective technology would support. For alkaline designs this is 1 A cm-2, and for PEM 
designs this is 2 A cm-2. This indicates that the current density which represents the optimal 
trade-off between efficiency and capital cost is higher than is technologically feasible. 
 
3.2 System Design 
The framework was successfully able to optimize the problem and determine an optimal design 
and operational strategy for the 1 GW case study under examination. The effectiveness of the 
Dinkelbach algorithm for optimizing a nonlinear problem can be seen in Figure 3. Each 
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condition converged on its optimized solution after three solution cycles. This allowed the 
nonlinear LCOH optimization to be solved linearly, thereby reducing complexity and 
potentially reducing solution time relative to a nonlinear optimization. 
 

 
Figure 4: The convergence speed on the f-value of the Dinkelbach algorithm for each loading condition. The 
initial value for f, in cycle 0, was set arbitrarily high at 100 as a starting point. It is not shown on the graph to 
emphasize the convergence of subsequent points. 
 
Major results of the system optimization and final system design for this case study can be 
found in Table 3. The equivalent full load hours loading condition has the lowest optimized 
levelized cost of hydrogen, at 4.73 €/kg. This loading condition has only the middle annual 
cost, but the highest hydrogen production rate, resulting in the lowest LCOH. The regular wind 
profile has the middle LCOH, despite having the lowest hydrogen production rate, because it 
also has the lowest annualized cost. The LCOH for the regular wind profile is only 1.9% greater 
than the full load hours profile, even though the hydrogen production rate is almost 6% lower 
due to the reduced annualized cost. The Wind Qtr load condition has the highest LCOH, a full 
8.9% higher than the Eq. FLH. It has by far the highest annualized cost, but the hydrogen 
production rate is similar the Eq FLH condition, which is not high enough to offset the high 
annualized cost. These LCOH values are in the same general range as other LCOH estimates, 
although the scale is greater [5,27].  
 
Table 3: The LCOH, hydrogen production quantity, and annualized cost of each optimized design. 

Load Condition LCOH (€/kg) H2 Prod (Mill kg/yr) Ann. Cost (Mill €/yr) 
Eq. FLH 4.73 84.4 399.6 
Wind 4.82 79.6 383.8 

Wind Qtr 5.15 83.2 428.3 
 
The reason for some of these differences can be explained by the optimized designs listed in 
Table 4 – the specific designs will be discussed later. One major cause of differences between 
the various load conditions is due to the differences between AWE and PEM. PEM designs are 
able to ramp between different loading levels and adjust to changing loads more quickly than 
AWE. They are also more efficient at high current densities than AWE designs, and so can 
produce more hydrogen from a given amount of input power. However, PEM are more 
expensive to build, as noted in the previous section, and this impacts the cost of the hydrogen 
they can produce. 
 
As can be seen in Table 4, the optimal design for the Eq. FLH condition introduces some PEM 
blocks to a design of mostly AWE blocks. This allows those few PEM blocks to produce 
hydrogen at a high rate using a high current density, and high efficiency. They carry most of 
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the power load, and the rest of the load is distributed among the remaining AWE blocks. PEM 
stacks are an economical choice when they are under a high, regular load. Comparing the 
second loading case of Wind, however, the AWE blocks are more economical when the load 
varies significantly. In this case, PEM blocks would not have a base load to use to produce 
large quantities of hydrogen, and so it is more economical to use the AWE blocks. The smaller 
50 MW blocks (AWE HP 10 MW, 5 Stacks) included in the optimal design provide increased 
flexibility when dealing with the power swings that happen with the wind profile. Interestingly, 
they mostly act as a baseload plant, which is at the minimum loading level most of the time, 
unless the system load reaches above 915 MW, in which case they uptake the remaining load. 
This allows the system to keep the average load across all blocks as low as possible, where the 
blocks are most efficient. The accelerated wind profile, Wind Qtr, has the most complicated 
optimal design. The majority of the blocks are PEM, which are necessary to respond to the 
rapidly changing loading level. PEM block designs have a higher ramping rate than AWE 
designs and are necessary to take advantage the rapid power fluctuations that happen in this 
power profile. A larger of the two AWE block is included to act as a base load producer. The 
two smaller blocks, one PEM and one AWE, again provide increased flexibility in dealing with 
the power fluctuations.  
 
Table 4: The final design selection, CapEx, and OpEx of each optimized design. 

Load Cond. Design Config CapEx (Mill €) OpEx (Mill € / yr) 
Eq. FLH AWE HP 10 MW, 10 Stacks – 7 blocks 

PEM HP 10MW, 10 Stacks – 3 blocks 
  

1535 166.7 

Wind AWE HP 10 MW, 10 Stacks – 9 blocks 
AWE HP 10 MW, 5 Stacks – 2 blocks 

  

1462 166.7 

Wind Qtr AWE HP 10 MW, 10 Stacks – 1 block 
AWE HP 10 MW, 5 Stacks – 1 block 

PEM HP 10 MW, 10 Stacks – 8 blocks 
PEM HP 10 MW, 5 Stacks – 1 block 

1671 165.9 

 
The CapEx values for the optimal designs are a direct result of the optimal design configuration. 
PEM blocks are more expensive than AWE blocks, and so raise the price of the total system. 
Larger blocks are also cheaper per MW than smaller blocks are, as a function of scale and size. 
The Eq. FLH load condition has a high CapEx than the Wind load condition because it uses 
several PEM blocks, even though the Wind load condition uses two smaller blocks, as the PEM 
blocks are far more expensive. The Wind Qtr load condition has the highest CapEx as the 
optimal design has even more PEM blocks than the Eq. FLH load condition. The OpEx result 
is interesting, as this is the result of the total amount of energy the system used over the year, 
which can be seen in Table 5. The Eq. FLH and the Wind loading conditions used the same 
amount of energy over the year, and so they have the same OpEx, but the OpEx is lower for 
the Wind Qtr load condition. This is because the system does not use all the power that is 
available under certain circumstances. 
 
Table 5: The total energy used, and utilization factor of each optimized design. 

Load Condition System Energy Use, Y (GWh) Utilization Factor 
Eq. FLH 3,920 1.0 
Wind 3,920 1.0 

Wind Qtr 3,900 0.995 
 
All energy available for use was used by both the Eq. FLH and the Wind load conditions, as 
their utilization factors are 1 for both, and the total system energy usage is the same. The Wind 
Qtr condition uses not all energy available under some conditions. Specifically, the 
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optimization occasionally chooses not to use the AWE electrolyzers during some short periods 
of increased wind activity. This may be a choice due a variety of factors, such as efficiency 
concerns or ramping rates. However, the system still uses 99.5% of the available energy, 
indicating this is only a problem in very limited circumstances. 
 
4.0 Conclusions 
In this work, a framework for the design and operation of a large-scale hydrogen electrolyzer 
has been developed and discussed. The framework takes the form of a two-part optimization 
problem. The first part optimizes the designs of relatively small modular units of stack and 
some balance of plant components, called blocks. The second part optimizes the selection of 
those blocks and their operational modes over the horizon of the optimization. The second part 
also uses the Dinkelbach algorithm, which converged on a solution within 3 cycles, as can be 
seen in Figure 4. 
 
To evaluate the framework, it was applied to a case study of a 1 gigawatt, wind-powered 
electrolyzer based in the Netherlands, with the goal of minimizing the levelized cost of 
hydrogen. The case study examined alkaline water electrolysis and polymer electrolyte 
membrane technologies, operating at ambient pressure or at delivery pressure, stacks that are 
1 MW, 5 MW, or 10 MW, and 1, 5, or 10 stacks per block. It also looked at three different 
power supply profiles, where the first profile was a constant power supply, the second was the 
power production profile of a theoretical 1 GW plant off the coast of the Netherlands, and the 
third profile was an accelerated wind profile. These different wind profiles were used to 
demonstrate how it can impact the design choices made by the optimization.  
 
Using the framework to optimize the design and operation of the electrolyzer plant for this case 
study found that there were differences in the design, levelized cost of hydrogen, and operation 
of the plant for the different power supply scenarios. The optimization found that for this case 
study AWE designs are cheaper than equivalent PEM designs, and that larger blocks are 
cheaper than smaller blocks per MW. Of the scenarios examined, the constant power supply 
condition resulted in the most hydrogen being produced, 84.4 million kg as seen in Table 3, 
and lowest levelized cost of hydrogen, at 4.73 €/kg. The wind power condition produced the 
least hydrogen out of the three power profiles, at 79.6 million kg, but only increased the 
levelized cost of hydrogen by 2% to 4.82 €/kg due to savings in cost from a different design, 
which can be seen in Table 4. Generally speaking, fast moving power profiles like the 
accelerated wind profile, Wind Qtr, used more PEM technology designs, as they are able to 
more quickly respond to changes in loading level, which is beneficial despite being the highest 
capital cost, at 1671 million €. However, the framework still chose to have a mix of technology 
types, indicating a potential benefit to technology mixing. It is important to state that when 
using power sources that shift more rapidly, the use of PEM electrolyzers will rise, as their 
increased ramping rates are more impactful. 
 
The framework developed in this work is a useful tool for designers of large-scale electrolysis 
plants. It offers the ability to rapidly understand the impact of various design options, and how 
the optimal design could be impacted by changes in various inputs. These types of plants are 
of interest to those who are in the hydrogen industry, and those who want to encourage the 
renewable feedstock industry. This framework may also be useful for large scale designs of 
other electrochemical systems provided the appropriate inputs. 
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